Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.093
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542534

RESUMO

Obesity has been increasing worldwide and is well-known as a risk factor for cognitive decline. It has been reported that oxidative stress in the brain is deeply involved in cognitive dysfunction in rodent models. While there are many studies on oxidation in the liver and adipose tissue of obese mice, the relationship between obesity-induced cognitive dysfunction and brain oxidation has not been elucidated. Here, we show that obesity induced by a high-fat, high-sucrose diet (HFSD) alters cognitive function in C57BL/6 male mice, and it may involve the acceleration of brain oxidation. Tocotrienols (T3s), which are members of the vitamin E family, can prevent HFSD-induced cognitive changes. To elucidate these mechanisms, respiratory metabolism, locomotor activity, temperature around brown adipose tissue, and protein profiles in the cerebrum cortex were measured. Contrary to our expectation, respiratory metabolism was decreased, and temperature around brown adipose tissue was increased in the feeding of HFSD. The proteins that regulate redox balance did not significantly change, but 12 proteins, which were changed by HFSD feeding and not changed by T3s-treated HFSD compared to control mice, were identified. Our results indicated that HFSD-induced obesity decreases mouse learning ability and that T3s prevent its change. Additionally, feeding of HFSD significantly increased brain oxidation. However, further study is needed to elucidate the mechanisms of change in oxidative stress in the brain by obesity.


Assuntos
Sacarose , Tocotrienóis , Masculino , Animais , Camundongos , Sacarose/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos
2.
J Transl Med ; 22(1): 145, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347623

RESUMO

BACKGROUND: Excessive energy intake in modern society has led to an epidemic surge in metabolic diseases, such as obesity and type 2 diabetes, posing profound threats to women's reproductive health. However, the precise impact and underlying pathogenesis of energy excess on female reproduction remain unclear. METHODS: We established an obese and hyperglycemic female mouse model induced by a high-fat and high-sucrose (HFHS) diet, then reproductive phenotypes of these mice were evaluated by examing sexual hormones, estrous cycles, and ovarian morphologies. Transcriptomic and precise metabolomic analyses of the ovaries were performed to compare the molecular and metabolic changes in HFHS mice. Finally, orthogonal partial least squares discriminant analysis was performed to compare the similarities of traits between HFHS mice and women with polycystic ovary syndrome (PCOS). RESULTS: The HFHS mice displayed marked reproductive dysfunctions, including elevated serum testosterone and luteinizing hormone levels, irregular estrous cycles, and impaired folliculogenesis, mimicking the clinical manifestations of women with PCOS. Precise metabolomic overview suggested that HFHS diet disrupted amino acid metabolism in the ovaries of female mice. Additionally, transcriptional profiling revealed pronounced disturbances in ovarian steroid hormone biosynthesis and glucolipid metabolism in HFHS mice. Further multi-omics analyses unveiled prominent aberration in ovarian arginine biosynthesis pathway. Notably, comparisons between HFHS mice and a cohort of PCOS patients identified analogous reproductive and metabolic signatures. CONCLUSIONS: Our results provide direct in vivo evidence for the detrimental effects of overnutrition on female reproduction and offer insights into the metabolic underpinnings of PCOS.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Feminino , Humanos , Animais , Camundongos , Sacarose/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Reprodução , Dieta , Perfilação da Expressão Gênica , Dieta Hiperlipídica/efeitos adversos
3.
Front Endocrinol (Lausanne) ; 15: 1265799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414818

RESUMO

Introduction: A high-fat/high-sucrose diet leads to adverse metabolic changes that affect insulin sensitivity, function, and secretion. The source of fat in the diet might inhibit or increase this adverse effect. Fish oil and cocoa butter are a significant part of our diets. Yet comparisons of these commonly used fat sources with high sucrose on pancreas morphology and function are not made. This study investigated the comparative effects of a fish oil-based high-fat/high-sucrose diet (Fish-HFDS) versus a cocoa butter-based high-fat/high-sucrose diet (Cocoa-HFDS) on endocrine pancreas morphology and function in mice. Methods: C57BL/6 male mice (n=12) were randomly assigned to dietary intervention either Fish-HFDS (n=6) or Cocoa-HFDS (n=6) for 22 weeks. Intraperitoneal glucose and insulin tolerance tests (IP-GTT and IP-ITT) were performed after 20-21 weeks of dietary intervention. Plasma concentrations of c-peptide, insulin, glucagon, GLP-1, and leptin were measured by Milliplex kit. Pancreatic tissues were collected for immunohistochemistry to measure islet number and composition. Tissues were multi-labelled with antibodies against insulin and glucagon, also including expression on Pdx1-positive cells. Results and discussion: Fish-HFDS-fed mice showed significantly reduced food intake and body weight gain compared to Cocoa-HFDS-fed mice. Fish-HFDS group had lower fasting blood glucose concentration and area under the curve (AUC) for both GTT and ITT. Plasma c-peptide, insulin, glucagon, and GLP-1 concentrations were increased in the Fish-HFDS group. Interestingly, mice fed the Fish-HFDS diet displayed higher plasma leptin concentration. Histochemical analysis revealed a significant increase in endocrine pancreas ß-cells and islet numbers in mice fed Fish-HFDS compared to the Cocoa-HFDS group. Taken together, these findings suggest that in a high-fat/high-sucrose dietary setting, the source of the fat, especially fish oil, can ameliorate the effect of sucrose on glucose homeostasis and endocrine pancreas morphology and function.


Assuntos
Gorduras na Dieta , Ilhotas Pancreáticas , Leptina , Masculino , Camundongos , Animais , Glucagon , Sacarose/efeitos adversos , Óleos de Peixe/farmacologia , Peptídeo C , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo , Insulina , Glucose , Peptídeo 1 Semelhante ao Glucagon/metabolismo
4.
J Nutr Biochem ; 124: 109504, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37944673

RESUMO

Asthma is an inflammatory disease characterized by chronic inflammation in lung tissues and excessive mucus production. High-fat diets have long been assumed to be a potential risk factor for asthma. However, to date, very few direct evidence indicating the involvement of high sucrose intake (HSI) in asthma progression exists. In this study, we investigate the effect of HSI on ovalbumin (OVA)-sensitized allergic asthma mice. We observed that HSI increased the expression of inflammatory genes (IL-1ß, IL-6, TNF-α) in adipose tissues and led to reactive oxygen species generation in the liver and lung. In addition, HSI accelerated the TLR4/NF-κB signaling pathway leading to MMP9 activation, which promotes the chemokines and TGF-ß secretion in the lungs of OVA-sensitized allergic asthma mice. More importantly, HSI significantly promoted the pathogenic Th2 and Th17 responses. The increase of IL-17A secretion by HSI increased the expression of chemokines (MCP-1, CXCL1, CXCL5, CXCL8). It resulted in eosinophil and mast cell infiltration in the lung and trachea. We also demonstrated that HSI increased mucus hypersecretion, which was validated by increased main mucin protein (MUC5AC) secreted in the lungs. Our findings suggest that HSI exacerbates the development of Th2/Th17-predominant asthma by upregulating the TLR4-mediated NF-κB pathway, leading to excessive MMP9 production.


Assuntos
Asma , Metaloproteinase 9 da Matriz , Camundongos , Animais , Ovalbumina/efeitos adversos , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Asma/metabolismo , Pulmão , Inflamação/metabolismo , Quimiocinas/metabolismo , Sacarose/efeitos adversos , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Líquido da Lavagem Broncoalveolar
5.
Br J Nutr ; 131(1): 63-72, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37424288

RESUMO

The purpose of this study is to further investigate the relationship between sweetener exposure and the risk of endometrial cancer (EC). Up until December 2022, a literature search in an electronic database was carried out utilizing PubMed, Web of Science, Ovid, and Scopus. The odds ratio (OR) and 95 % confidence interval (CI) were used to evaluate the results. Sweeteners were divided into nutritional sweeteners (generally refers to sugar, such as sucrose and glucose) and non-nutritional sweeteners (generally refers to artificial sweeteners, such saccharin and aspartame). Ten cohort studies and two case-control studies were eventually included. The study found that in 12 studies, compared with the non-exposed group, the incidence rate of EC in the sweetener exposed group was higher (OR = 1·15, 95 % CI = [1·07, 1·24]). Subgroup analysis showed that in 11 studies, the incidence rate of EC in the nutritional sweetener exposed group was higher than that in the non-exposed group (OR = 1·25, 95 % CI = [1·14, 1·38]). In 4 studies, there was no difference in the incidence rate of EC between individuals exposed to non-nutritional sweeteners and those who were not exposed to non-nutritional sweeteners (OR = 0·90, 95 % CI = [0·81, 1·01]). This study reported that the consumption of nutritional sweeteners may increase the risk of EC, whereas there was no significant relationship between the exposure of non-nutritional sweeteners and the incidence of EC. Based on the results of this study, it is recommended to reduce the intake of nutritional sweeteners, but it is uncertain whether use of on-nutritional sweeteners instead of nutritional sweetener.


Assuntos
Neoplasias do Endométrio , Adoçantes não Calóricos , Feminino , Humanos , Aspartame/efeitos adversos , Neoplasias do Endométrio/epidemiologia , Neoplasias do Endométrio/etiologia , Adoçantes não Calóricos/efeitos adversos , Sacarina/efeitos adversos , Sacarose/efeitos adversos , Edulcorantes/efeitos adversos , Estudos Observacionais como Assunto
6.
Front Endocrinol (Lausanne) ; 14: 1181064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929025

RESUMO

Aim/Introduction: The study aimed to determine the effectiveness of early antidiabetic therapy in reversing metabolic changes caused by high-fat and high-sucrose diet (HFHSD) in both sexes. Methods: Elderly Sprague-Dawley rats, 45 weeks old, were randomized into four groups: a control group fed on the standard diet (STD), one group fed the HFHSD, and two groups fed the HFHSD along with long-term treatment of either metformin (HFHSD+M) or liraglutide (HFHSD+L). Antidiabetic treatment started 5 weeks after the introduction of the diet and lasted 13 weeks until the animals were 64 weeks old. Results: Unexpectedly, HFHSD-fed animals did not gain weight but underwent significant metabolic changes. Both antidiabetic treatments produced sex-specific effects, but neither prevented the onset of prediabetes nor diabetes. Conclusion: Liraglutide vested benefits to liver and skeletal muscle tissue in males but induced signs of insulin resistance in females.


Assuntos
Liraglutida , Síndrome Metabólica , Metformina , Animais , Feminino , Masculino , Ratos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/etiologia , Metformina/uso terapêutico , Ratos Sprague-Dawley , Sacarose/efeitos adversos , Fatores Sexuais
7.
Biochem Biophys Res Commun ; 682: 207-215, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826944

RESUMO

BACKGROUND AND AIMS: Cardiovascular disease (CVD) is known to be linked with metabolic associated fatty liver disease and type 2 diabetes, but few studies assessed this relationship in prediabetes, especially among women, who are at greater risk of CVD. We aimed to evaluate cardiac alterations and its relationship with hepatic lipid metabolism in prediabetic female rats submitted to high-fat-high-sucrose diet (HFS). METHODS AND RESULTS: Wistar female rats were divided into 2 groups fed for 5 months with standard or HFS diet. We analyzed cardiac morphology, function, perfusion and fibrosis by Magnetic Resonance Imaging. Hepatic lipid contents along with inflammation and lipid metabolism gene expression were assessed. Five months of HFS diet induced glucose intolerance (p < 0.05), cardiac remodeling characterized by increased left-ventricular volume, wall thickness and mass (p < 0.05). No significant differences were found in left-ventricular ejection fraction and cardiac fibrosis but increased myocardial perfusion (p < 0.01) and reduced cardiac index (p < 0.05) were shown. HFS diet induced hepatic lipid accumulation with increased total lipid mass (p < 0.001) and triglyceride contents (p < 0.05), but also increased mitochondrial (CPT1a, MCAD; (p < 0.001; p < 0.05) and peroxisomal (ACO, LCAD; (p < 0.05; p < 0.001) ß-oxidation gene expression. Myocardial wall thickness and perfusion were correlated with hepatic ß-oxidation genes expression. Furthermore, myocardial perfusion was also correlated with hepatic lipid content and glucose intolerance. CONCLUSION: This study brings new insights on the relationship between cardiac sub-clinical alterations and hepatic metabolism in female prediabetic rats. Further studies are warranted to explore its involvement in the higher CVD risk observed among prediabetic women.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Estado Pré-Diabético , Humanos , Ratos , Feminino , Animais , Estado Pré-Diabético/metabolismo , Sacarose/efeitos adversos , Sacarose/metabolismo , Metabolismo dos Lipídeos , Intolerância à Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Remodelação Ventricular , Volume Sistólico , Ratos Wistar , Função Ventricular Esquerda , Fígado/metabolismo , Fibrose , Perfusão , Doenças Cardiovasculares/metabolismo , Lipídeos , Dieta Hiperlipídica/efeitos adversos
8.
Mol Nutr Food Res ; 67(20): e2300244, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688304

RESUMO

SCOPE: High dietary sugar and sweeteners are suspected to cause the development of rheumatoid arthritis (RA) symptoms through the induction of proinflammatory cytokine release. However, the mechanisms by which increased dietary sugar affects RA etiology are not yet fully understood. The study uses a mouse model of collagen-induced RA (CIA) to investigate the relationship between excessive sugar consumption and RA risk. METHODS AND RESULTS: RA-associated pathological features are assessed in the nonimmunized (NI) control group, the CIA-positive control group, and the CIA + high-sucrose diet (CIA+HS, 63% calories from sucrose) group. Compared with the CIA group, the CIA+HS group shows a greater increase in paw thickness and clinical scores, as well as, a higher degree of pannus formation and inflammation in the knee, ankle, and sole tissues. Moreover, the infiltration of immune cells is increased in the CIA+HS group. Although the expression of hepatic lipogenic genes, is not altered, that of toll-like receptor (TLR4) and IL-1ß is considerably elevated in the CIA+HS group. CONCLUSIONS: These findings suggest that excessive sucrose consumption causes hepatic fibrosis and inflammation, contributing to the pathophysiology of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Sacarose/efeitos adversos , Artrite Experimental/etiologia , Artrite Reumatoide/patologia , Inflamação/patologia , Colágeno , Dieta/efeitos adversos , Açúcares da Dieta/efeitos adversos
9.
Sci Rep ; 13(1): 12013, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491416

RESUMO

Although once a health concern largely considered in adults, the obesity epidemic is now prevalent in pediatric populations. While detrimental effects on skeletal muscle function have been seen in adulthood, the effects of obesity on skeletal muscle function in childhood is not clearly understood. The purpose of this study was to determine if the consumption of a high-fat high-sucrose (HFS) diet, starting in the post-weaning period, leads to changes in skeletal muscle morphology and mechanics after 14 weeks on the HFS diet. Eighteen 3-week-old male CD-Sprague Dawley rats were randomly assigned to a HFS (C-HFS, n = 10) or standard chow diet (C-CHOW, n = 8). Outcome measures included: weekly energy intake, activity levels, oxygen consumption, body mass, body composition, metabolic profile, serum protein levels, and medial gastrocnemius gene expression, morphology, and mechanics. The main findings from this study were that C-HFS rats: (1) had a greater body mass and percent body fat than control rats; (2) showed early signs of metabolic syndrome; (3) demonstrated potential impairment in muscle remodeling; (4) produced lower relative muscle force; and (5) had a shift in the force-length relationship, indicating that the medial gastrocnemius had shorter muscle fiber lengths compared to those of C-CHOW rats. Based on the results of this study, we conclude that exposure to a HFS diet led to increased body mass, body fat percentage, and early signs of metabolic syndrome, resulting in functional deficits in MG of childhood rats.


Assuntos
Síndrome Metabólica , Sacarose , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Sacarose/efeitos adversos , Sacarose/metabolismo , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Músculo Esquelético/metabolismo
10.
J Contemp Dent Pract ; 24(2): 137-145, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272146

RESUMO

BACKGROUND: Sugar is the main culprit in many health dysfunctions. Excessive sugar intake can negatively affect oral health, precipitate diabetes, and lead to weight gain and obesity. Sucrose is the primary form of sugar, and is strongly correlated with dental caries. Artificial sweeteners are chemically synthesized sugar substitutes that are generally regarded as being low-calorie. OBJECTIVE: This review examines the current evidence in the literature for the need for artificial sweeteners and outlines its implications for the health of children. We briefly outline its adverse effects, and concerns regarding their safety. REVIEW RESULTS: Artificial sweeteners are a widely used food additive. Six main artificial sweeteners are approved by the food and drug administration (FDA). The conflicting results and divergent regulatory norms of each sweetener are a constant cause of concern and debate. However, most studies have spotlighted the beneficial effects of artificial sweeteners. Dental caries diminish with the increase in sweetener intake. An increase in appetite and eventually weight gain is observed in individuals consuming artificial sweeteners. CONCLUSION: Artificial sweeteners are indeed a bane according to present studies, although more research on recently discovered non-nutritive artificial sweeteners is required. It also has a positive effect on overall health disorders. If one curbs the onset of dental caries, then the eventual rise is highly unlikely. CLINICAL SIGNIFICANCE: Artificial sweeteners' effect on lowering dental caries will help to reduce the caries index in general. Oral hygiene is maintained, and the growth of oral bacterium is depressed. Research on novel sweeteners will help to compare their efficacy in caries prevention compared to existing ones. It is necessary to educate people on artificial sweeteners and its implication as one can use them by being aware of their properties.


Assuntos
Cárie Dentária , Edulcorantes , Humanos , Criança , Edulcorantes/efeitos adversos , Cárie Dentária/etiologia , Cárie Dentária/prevenção & controle , Obesidade/prevenção & controle , Aumento de Peso , Sacarose/efeitos adversos
12.
Food Funct ; 14(6): 2836-2846, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36880221

RESUMO

A westernized diet characterized by high fat and sugar is tightly associated with the development of metabolic diseases and inflammatory bowel disease. Although a high-fat diet has been extensively studied for its involvement in various diseases, fewer studies have examined the impact of a high-sugar diet on the development of certain diseases, particularly enteric infections. This study aimed to explore the effect of a high sucrose diet on Salmonella Typhimurium-induced infection. C57BL/6 mice received a normal diet (Control) or a high sucrose diet (HSD) for eight weeks and then were infected by Salmonella Typhimurium. The high-sugar diet profoundly altered the relative abundance of certain microbial taxa. Bacteroidetes and Verrucomicrobiota were more abundant in normal diet-fed mice than in HSD-fed mice. Moreover, short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) were significantly higher in mice from the control group than the HSD group. More S. Typhimurium counts in feces and other tissues were observed in HSD-fed mice after infection. Tight junction proteins and antimicrobial peptides were significantly decreased in HSD-fed mice. Fecal microbiota transplantation (FMT) demonstrated that mice that received normal fecal microbiota had lower Salmonella Typhimurium burdens compared with mice that received HSD fecal microbiota, indicating that the altered microbial communities are associated with the severity of infection. Together, these findings suggest that the excessive intake of sucrose disturbs intestinal homeostasis and predisposes mice to Salmonella-induced infection.


Assuntos
Microbiota , Infecções por Salmonella , Camundongos , Animais , Salmonella typhimurium , Sacarose/efeitos adversos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
13.
Artigo em Inglês | MEDLINE | ID: mdl-36674144

RESUMO

Maternal high-caloric nutrition and related gestational diabetes mellitus (GDM) are relevant modulators of the intrauterine environment, increasing the risk of liver metabolic alterations in mothers and offspring. In contrast, as a non-pharmacological approach against metabolic disorders, exercise is highly recommended in GDM treatment. We analysed whether gestational exercise (GE) protects mothers from diet-induced GDM metabolic consequences and mitigates liver mitochondrial deleterious alterations in their 6-week-old male offspring. Female Sprague Dawley rats were fed with control or high-fat high-sucrose (HFHS) diet and kept sedentary or submitted to GE. Male offspring were sedentary and fed with control diet. Sedentary HFHS mothers and their offspring showed impaired hepatic mitochondrial biogenesis and morphological evidence of mitochondrial remodelling. In contrast, GE-related beneficial effects were demonstrated by upregulation of mitochondrial biogenesis signalling markers and mitochondrial fusion proteins and downregulation of mitochondrial fission protein. Alterations in miR-34a, miR-130b, and miR-494, associated with epigenetic regulation of mitochondrial biogenesis, suggested that GE is a more critical modulator of intergenerational changes in miRs expression than the maternal diet. Our data showed that GE positively modulated the altered hepatic mitochondrial biogenesis and dynamics markers and quality control signalling associated with maternal HFHS-diet-related GDM in mothers and offspring.


Assuntos
Diabetes Gestacional , MicroRNAs , Gravidez , Ratos , Humanos , Animais , Masculino , Feminino , Sacarose/efeitos adversos , Sacarose/metabolismo , Ratos Sprague-Dawley , Epigênese Genética , Diabetes Gestacional/induzido quimicamente , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , MicroRNAs/metabolismo
14.
J Nutr Biochem ; 112: 109174, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280127

RESUMO

Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease. Yet, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. Thus, there is a need for identifying specific gene and pathway changes that drive the progression of NAFLD. This study uses high-fat Western diet (HFWD) together with liquid sugar [fructose and sucrose (F/S)] feeding for 12 weeks in mice to induce obesity and examine hepatic transcriptomic changes that occur in NAFLD progression. The combination of a HFWD+F/S in the drinking water exacerbated HFWD-induced obesity, hyperinsulinemia, hyperglycemia, hepatic steatosis, inflammation, and human and murine fibrosis gene set enrichment that is consistent with progression to NASH. RNAseq analysis revealed differentially expressed genes (DEGs) associated with HFWD and HFWD+F/S dietary treatments compared to Chow-fed mice. However, liquid sugar consumption resulted in a unique set of hepatic DEGs in HFWD+F/S-fed mice, which were enriched in the complement and coagulation cascades using network and biological analysis. Cluster analysis identified Orosomucoid (ORM) as a HFWD+F/S upregulated complement and coagulation cascades gene that was also upregulated in hepatocytes treated with TNFα or free fatty acids in combination with hypoxia. ORM expression was found to correlate with NAFLD parameters in obese mice. Taken together, this study examined key genes, biological processes, and pathway changes in the liver of HFWD+F/S mice in an effort to provide insight into the molecular basis for which the addition of liquid sugar promotes the progression of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transcriptoma , Frutose/efeitos adversos , Frutose/metabolismo , Sacarose/efeitos adversos , Sacarose/metabolismo , Dieta Ocidental/efeitos adversos , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
15.
J Nutr Biochem ; 111: 109185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270573

RESUMO

Skipping breakfast is an irregular feeding behavior, typically in young people. In our previous study, we established a 4 h-delayed feeding protocol for rats as a breakfast-skipping model and showed that the 4 h-delayed feeding of a high-fat diet led to body weight gain in rats. Excess sucrose induces metabolic syndrome and fatty liver. Recently, excess sucrose intake has received increased attention. Young people generally consume more sugar than adults do. In the present study, we investigated whether a 4 h-delayed feeding promoted high-sucrose diet-induced abnormalities in lipid metabolism, such as fatty liver and obesity in rats. The 4 h-delayed feeding rats showed increased body weight gain, although it did not induce fatty liver and hyperlipidemia compared to normal feeding rats. Serum insulin concentration during the feeding period was higher than in the control rats, suggesting that slight insulin resistance was induced by the 4 h-delayed feeding. The surge in body temperature was also delayed by 4 h in response to the 4 h-delayed feeding. This delay would result in less energy expenditure to increase body weight. The oscillations of hepatic lipid and glucose metabolism-related gene expression were delayed by almost 2-4 h, and the clock genes were delayed by approximately 2 h. The 4 h-delayed feeding induced weight gain by affecting body temperature, insulin resistance, and circadian oscillation of lipid metabolism-related genes in rats fed a high-sucrose diet, suggesting that a high sucrose intake with breakfast skipping leads to obesity.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Ratos , Animais , Ritmo Circadiano , Sacarose/efeitos adversos , Sacarose/metabolismo , Temperatura Corporal , Aumento de Peso , Metabolismo dos Lipídeos , Fígado/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Peso Corporal , Lipídeos
16.
Eur J Nutr ; 62(1): 199-211, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35933635

RESUMO

AIMS: Overconsumption of sugar-sweetened beverages (SSBs) is associated with an increased risk of metabolic disorders, including obesity and diabetes. However, accumulating evidence also suggests the potential negative impact of consuming nonnutritive sweeteners (NNSs) on weight and glycaemic control. The metabolic effects of sucralose, the most widely used NNS, remain controversial. This study aimed to compare the impact of intake of dietary sucralose (acceptable daily intake dose, ADI dose) and sucrose-sweetened water (at the same sweetness level) on lipid and glucose metabolism in male mice. MATERIALS AND METHODS: Sucralose (0.1 mg/mL) or sucrose (60 mg/mL) was added to the drinking water of 8-week-old male C57BL/6 mice for 16 weeks, followed by oral glucose and intraperitoneal insulin tolerance tests, and measurements of bone mineral density, plasma lipids, and hormones. After the mice were sacrificed, the duodenum and ileum were used for examination of sweet taste receptors (STRs) and glucose transporters. RESULTS: A significant increase in fat mass was observed in the sucrose group of mice after 16 weeks of sweetened water drinking. Sucrose consumption also led to increased levels of plasma LDL, insulin, lipid deposition in the liver, and increased glucose intolerance in mice. Compared with the sucrose group, mice consuming sucralose showed much lower fat accumulation, hyperlipidaemia, liver steatosis, and glucose intolerance. In addition, the daily dose of sucralose only had a moderate effect on T1R2/3 in the intestine, without affecting glucose transporters and plasma insulin levels. CONCLUSION: Compared with mice consuming sucrose-sweetened water, daily drinking of sucralose within the ADI dose had a much lower impact on glucose and lipid homeostasis.


Assuntos
Ingestão de Líquidos , Intolerância à Glucose , Masculino , Animais , Camundongos , Água , Camundongos Endogâmicos C57BL , Sacarose/efeitos adversos , Glucose/metabolismo , Insulina , Lipídeos
17.
J Nutr Biochem ; 112: 109223, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36410638

RESUMO

Osteoarthritis (OA) is marked by chronic low-grade systemic inflammation and cartilage destruction. High fat diet causes obesity and increases the risk of knee OA-development. However, the impact of high dietary sugar intake on OA pathogenesis has not been elucidated yet. Therefore, we investigated the effects of a high-fat and high-sucrose (HF+HS) diet in experimental OA mouse models. Eight-week-old male C57BL/6J mice were fed a standard chow (n=6), high-fat (HF) (n=5), or HF+HS (n=7) diets for 12 weeks; thereafter, the mice underwent surgical destabilization of the medial meniscus (DMM) and received the same experimental diets for an additional 8 weeks. The pathogenesis of knee OA, obesogenic parameters, and inflammation levels in the liver and adipose tissue were investigated. HF+HS diet induced severe cartilage erosion with osteophyte development and subchondral bone plate thickening, indicating that HF+HS diet exacerbated OA. Despite marginal differences in metabolic parameters, hepatic free cholesterol accumulation increased in mice with DMM-induced OA fed on HF+HS diet than in those fed HF diet. Notably, the levels of inflammatory cytokines and fibrosis markers were greater in the livers of mice with DMM-induced OA, fed on HF+HS diet than those in the control group. However, adipose tissue remodeling was not affected by the HF+HS diet. These findings indicate that excess sucrose intake along with a HF diet triggers hepatic inflammation and fibrosis, thereby, contributing to OA pathogenesis.


Assuntos
Dieta Hiperlipídica , Osteoartrite , Masculino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Sacarose/efeitos adversos , Sacarose/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fígado/metabolismo , Fibrose , Inflamação/metabolismo , Osteoartrite/complicações , Osteoartrite/metabolismo
18.
J Nutr Biochem ; 113: 109254, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572070

RESUMO

High-fat diets (HFDs) and frequent consumption of sugar-sweetened beverages (SSBs) are potential contributors to increasing inflammatory bowel disease (IBD) incidences. While HFDs have been implicated in mild intestinal inflammation, the role of sucrose in SSBs remains unclear. Therefore, we studied the role of SSBs in IBD pathogenesis in a mouse model and humans. C57BL6/J mice were given ad libitum access to a sucrose solution or plain water for 10 weeks, with or without an HFD. Interestingly, sucrose solution consumption alone did not induce gut inflammation in mice; however, when combined with an HFD, it dramatically increased the inflammation score, submucosal edema, and CD45+ cell infiltration. 16S ribosomal RNA gene-sequencing revealed that sucrose solution and HFD co-consumption significantly increased the relative abundance of IBD-related pathogenic bacteria when compared with HFD consumption. RNA sequencing and flow cytometry showed that co-consumption promoted pro-inflammatory cytokine and chemokine synthesis, dendritic-cell expansion, and IFN-γ+TNF-α+CD4+ and CD8+ T-cell activation. Fecal microbiota transplantation from HFD- and sucrose water-fed mice into gut-sterilized mice increased the susceptibility to dextran sulfate sodium-induced colitis in the recipient mice. Consistent herewith, high consumption of SSBs and animal fat-rich diets markedly increased systemic inflammation-associated IBD marker expression in humans. In conclusion, SSBs exacerbate HFD-induced colitis by triggering a shift of the gut microbiome into a pathobiome. Our findings provide new insights for the development of strategies aimed at preventing IBD.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Bebidas Adoçadas com Açúcar , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Colite/induzido quimicamente , Colite/microbiologia , Doenças Inflamatórias Intestinais/etiologia , Inflamação , Sacarose/efeitos adversos , Água/efeitos adversos , Camundongos Endogâmicos C57BL , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
19.
J Nutr Biochem ; 112: 109225, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435288

RESUMO

Dysregulation of the renin-angiotensin system (RAS) is a contributor to high-fat diet-related blood pressure (BP) increases. Deleterious effects of dysregulated RAS result in an overproduction of reactive oxygen species and a decrease in endothelial nitric oxide (NO) bioavailability due to increased NADPH oxidase (NOX) expression. Dietary polyphenols have been shown to mitigate the imbalance in the redox state and protect against endothelial dysfunction induced by a high-fat diet. Thus, we aim to determine whether polyphenol-rich blackberry and raspberry, alone and in combination, attenuate the detrimental effects of a high-fat, high-sucrose (HFHS) diet on the vascular endothelium and kidneys of mice. We show that a HFHS diet increased the expression of renal and aortic angiotensin type 1 receptor (AT1R). Further, NOX1 and NOX4 expression were increased in the kidney contributing to fibrotic damage. In human aortic endothelial cells (HAECs), palmitic acid increased the expression of NOX4, potentially driving oxidative damage in the aorta, as evidenced by increased nitrotyrosine expression. Berries reduced the expression of renal and aortic AT1R, leading to a subsequent decrease in renal NOX expression and reduced aortic oxidative stress evidenced by reduced nitrotyrosine expression. Blackberry and raspberry in combination increased the expression of NRF2 and its downstream proteins in HAECs, thereby reducing the oxidative burden to the endothelium. In combination, blackberry and raspberry also increased serum levels of NO metabolites. These findings indicate that blackberry and raspberry unique polyphenols may act synergistically to favorably modulate the abovementioned pathways and attenuate HFHS diet-induced increases in BP.


Assuntos
Frutas , Hipertensão , Animais , Humanos , Camundongos , Frutas/metabolismo , Óxido Nítrico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Sacarose/efeitos adversos , Sacarose/metabolismo , Células Endoteliais/metabolismo , Rim/metabolismo , Hipertensão/metabolismo , Estresse Oxidativo , NADPH Oxidases/metabolismo , Endotélio Vascular/metabolismo , Aorta/metabolismo
20.
J Indian Soc Pedod Prev Dent ; 41(4): 267-273, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235811

RESUMO

AIM: The aim of this study was to assess and compare the cariogenicity of indigenous sugars (palm sugar, jaggery, and brown sugar) and refined sugar at different frequencies of exposure through a biofilm caries model. METHODOLOGY: This in vitro study was conducted on 60 extracted human premolar teeth which were randomly divided into four groups (refined sugar, jaggery, palm sugar, and brown sugar) with each group being exposed to their respective sugars at one, three, and five frequencies for 5 min at defined time periods with five sample teeth for each exposure (4 × 3 × 5 = 60). The acidogenicity of biofilm was found by a 5-day pH cycling model. After 5 days, enamel demineralization, protein content, and polysaccharide formation of the biofilm following exposure to various sugars at various frequencies were assessed and compared. Statistical analyses were done using a one-way analysis of variance for intergroup comparisons between various sugars at various levels of frequencies. RESULTS: The enamel demineralization was found to be least in palm sugar with mean percentage surface hardness loss of 8%, 17%, and 25% at one, three, and five frequencies of exposures and this was found to be statistically significant compared to other sugars (P < 0.001). The acidogenicity of biofilm increased with an increase in the frequency of exposures, but none of the indigenous sugars had a drop below 5.5 (critical pH) at a single frequency of exposure indicating less acid production at minimal exposure. The protein content of the biofilm exposed to palm sugar was less on comparison with other sugars and it was found to be statistically significant (P < 0.001). The polysaccharide formation of all sugars was similar at each frequency of exposure and was statistically nonsignificant. CONCLUSION: From the results obtained, it was concluded that though cariogenicity increased in all sugars with an increase in frequency of exposure, the level of cariogenicity was least in palm sugar compared to other sugars used in the study. Hence, it is recommended to use palm sugar as an alternative to refined sugar.


Assuntos
Cárie Dentária , Desmineralização do Dente , Humanos , Açúcares , Suscetibilidade à Cárie Dentária , Sacarose/efeitos adversos , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...